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Abstract. In this paper, we address two key trends in the synthesis of implementations for
embedded multiprocessors — (1) the increasing importance of managing interprocessor communi-
cation (IPC) in an efficient manner, and (2) the acceptance of significantly longer compilation time
by embedded system designers. The former aspect is especially evident in the increasing interest
among embedded system architects in innovative communication architectures, such as those
involving optical interconnection technologies, and hybrid electro-optical structures [8, 19]. The
latter aspect — increased compile-time tolerance — results because embedded multiprocessor sys-
tems are typically designed as final implementations for dedicated functions. While multiprocessor
mapping strategies for general-purpose systems are usually designed with low to moderate com-
plexity as a constraint, embedded system design tools are allowed to employ more thorough and
time-consuming optimization techniques [13]. 

1.  Introduction

In this paper, we develop novel partitioning and scheduling techniques that aggressively
streamline interprocessor communication. In particular, we address two important trends in the synthe-
sis of implementations for embedded multiprocessors — (1) the increasing importance of managing
interprocessor communication (IPC) in an efficient manner, and (2) the acceptance of significantly
longer compilation time by embedded system designers compared to designers of general purpose sys-
tems. The former aspect is especially relevant due to the increasing interest among embedded system
architects in innovative communication architectures, such as those involving optical interconnection
technologies, and hybrid electro-optical structures [8, 19]. Effective experimentation with unconven-
tional architectures requires adequate design tools that can exploit such architectures. The latter aspect
— increased compile time tolerance — results because embedded multiprocessor systems are typically
designed as final implementations for dedicated functions; modifications to embedded system imple-
mentations are rare. This increased compile time tolerance allows embedded system design tools to
employ more thorough, time-consuming optimization techniques [13]; in contrast, multiprocessor map-
ping strategies for general purpose systems are typically designed with low to moderate complexity as a
constraint.

Our work builds on the two-phased decomposition of multiprocessor scheduling that was
introduced by Sarkar [17], and explored subsequently by other researchers such as Yang and Gerasoulis
[23] and Kwok and Ahmad [10]. In this decomposition, the application graph is first mapped to a fully-
connected multiprocessor architecture that has an unbounded number of processors. We call such an
architecture a fully-connected, infinite processor (FCIP) architecture. In a fully-connected network, any
number of processors can perform interprocessor communication simultaneously. The objective in the
mapping onto an FCIP is the same as the overall objective — minimization of net execution time. In the
second phase of Sarkar’s two-phase process, called merging, the schedule derived for an FCIP is
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mapped onto the given resource-constrained architecture. Our use of Sarkar’s decomposition scheme
and the associated breakdown of scheduling into different phases is motivated by the idea of introduc-
ing modularity and hence more flexibility in allocating compile-time resources throughout the optimi-
zation process. In this paper, we focus on the first phase (clustering) of this decomposed problem — the
scheduling of a given task graph onto an FCIP architecture. Algorithms to address second phase have
been discussed by other authors (e.g., see [21]).

2.  Previous Work

Algorithms for IPC-conscious scheduling have received increasingly high attention in the liter-
ature. A wide variety of these algorithms have been proposed as scheduling heuristics that directly
emphasize reducing the effect of IPC to minimize the net execution time [17, 23, 10], and are based on
the framework of clustering algorithms; this group of algorithms is the main focus of this paper. Among
existing clustering approaches are Sarkar’s Internalization Algorithm (SIA) [17] and the Dominant
Sequence Clustering (DSC) algorithm of Yang and Gerasoulis [23].

Sarkar’s clustering algorithm has relatively low complexity. It starts with a complete solution
and iteratively makes local changes to it, and thus is likely to get stuck in local minima. DSC, on the
other hand, builds the solution incrementally. It makes changes with regard to the global impact on the
net execution time, but only accounts for the local effects of these changes, and this can lead to the
accumulation of suboptimal decisions, especially for large task graphs with high communication costs,
and graphs with multiple critical paths. Nevertheless, this algorithm has been shown to be capable of
producing very good solutions, and it is especially impressive given its low complexity.

 However, being deterministic in nature, neither SIA nor DSC can exploit the increased com-
pile time tolerance in embedded system implementation. There has been some research on scheduling
heuristics in the context of compile-time efficiency. Liao et al. [12] average the normalized compile
time (compile time per application graph node per processor) for each heuristic (across seven basic list
scheduling heuristics) for various random graphs, and describe the effect of graph size and number of
processors on the total compile time consumed. Kwok and Ahmad also measure and compare the run-
ning times of different algorithms in [10]; however, they do not study the implications from the compile
time tolerance point of view. Additionally, since both works concentrate on deterministic algorithms,
they do not exploit compile time budgets that are larger than the amounts of time required by their
respective approaches.

There has been some probabilistic search implementation of scheduling heuristics in the litera-
ture, mainly in the forms of simulated annealing (SA) algorithms or genetic algorithms (GA). The sim-
ulated annealing algorithms attempt to avoid getting trapped in local minima and have been
successfully used for scheduling problems [15]. GAs have the same characteristic as SAs regarding
local minima and also have other advantages, which will be discussed in section 3.2. Hou et al. [7],
Wang and Korfhage [22], Kwok and Ahmad [11], Zomaya et al. [25], and Correa et al. [2] have pro-
posed different genetic algorithms in the scheduling context. Hou and Correa use similar integer string
representations of solutions. Wang and Korfhage use a two-dimensional matrix scheme to encode the
solution. Kwok and Ahmad also use integer string representations, and Zomaya et al. use a matrix of
integer substrings. An aspect that all of these algorithms have in common is a relatively complex solu-
tion representation in the underlying GA formulation. Each of these algorithms must at each step check
for the validity of the associated candidate solution and any time basic genetic operators (crossover and
mutation) are applied, a correction function needs to be invoked to eliminate illegal solutions. This
overhead also occurs while initializing the first population of solutions. These algorithms also need to
significantly modify the basic crossover and mutation procedures to be adapted to their proposed encod-
ing scheme. We show that in the context of the clustering/merging decomposition, these complications
can be avoided in the clustering phase, and more streamlined solution encodings can be used for cluster-
ing.

Correa et al. address compile time consumption in the context of their GA approach. In partic-
ular, they run the lower-complexity search algorithms as many times as the number of generations of
the more complex GA, and compare the resulting compile times and net execution times (schedule
makespans). However, this measurement provides only a rough approximation of compile time effi-



3

ciency. More accurate measurement can be developed in terms of fixed compile-time budgets (instead
of fixed numbers of generations). This will be discussed further in section 6.

3.  Background

We represent the applications that are to be mapped into parallel implementations in terms of the
widely-used task graph model. A task graph is a directed acyclic graph (DAG) , where
•   is the set of task nodes, which are in one-to-one correspondence with the computational tasks in the
application ( ).
•   is the set of communication edges (each member is an ordered pair of tasks).
•  denotes a function that assigns an execution time to each member of .
•  denotes a function that gives the cost (latency) of each communication edge. That is,

for all ;  for all , ; and  is the cost of transferring
data between and  if they are assigned to different processors.

We assume that task graphs have unique source and sink nodes. Arbitrary DAGs can be con-
verted to this form by appropriately connecting dummy source and sink vertices [3].

3.1 Clustering and Scheduling

 The net execution time is defined by the following expression:

, (1)

where  ( ) is the length of the longest path between node  and the source (sink)
node in the scheduled graph, including all of the communication and computation costs in that path, but
excluding  from . Here, by the scheduled graph, we mean the task graph with all known
information about clustering and task execution ordering modeled using additional zero-cost edges. In
particular, if and  are clustered together, and  is scheduled to execute immediately after ,
then the edge  is inserted in the scheduled graph.

Although a number of innovative clustering and scheduling algorithms exist to date, none of
these provide a definitive solution to the clustering problem. Some prominent examples of existing
clustering algorithms are:
•  Dominant sequence clustering (DSC) by Yang and Gerasoulis [23],
•  Linear clustering by Kim and Browne [9], and
•  Sarkar's internalization algorithm (SIA) [17].

In the context of embedded system implementation, one limitation shared by algorithms such as
these is that they have been designed for general purpose computation. In the general-purpose domain,
there are many categories of applications for which short compile time is of major concern. In such sce-
narios, it is highly desirable to ensure that an application can be mapped to an architecture within a mat-
ter of seconds. Thus, the clustering techniques of Sarkar, Kim, and especially, Yang have been designed
with low computational complexity as a major goal. 

However, in embedded application domains, such as signal/image/video processing, the quality of
the synthesized solution is by far the most dominant consideration, and designers of such systems can
often tolerate compile times on the order of hours or even days — if the synthesis results are markedly
better than those offered by low complexity techniques. We have explored a number of approaches for
exploiting this increased run-time-tolerance, the first of which applies the concept of genetic algorithms
to develop a novel approach for multiprocessor clustering and scheduling.

3.2  Genetic Algorithms

Clustering and scheduling problems, being intricate and combinatorial in nature, are best char-
acterized by their very large, complex and multi-modal solution spaces. Genetic algorithms (GAs),
inspired by observation of the natural process of evolution, are commonly considered to perform well
on nonlinear and combinatorial problems [6]. A GA operates on a population of solutions rather than a
single solution in the search space, and evaluates the fitness of candidate solutions to the problem to

G V E,( )=
V

V v1 v2 … v V, , ,{ }=( )
E
t V ℵ→: V
C V: V ℵ→×

C v v,( ) 0≡ V C v1 v2,( ) C v2 v1,( )= v1 v2 C v1 v2,( )
v1 v2

τN max tlevel vx( ) blevel vx( )+ v
x

V∈( )=

tlevel vx( ) blevel vx( ) vx

t vx( ) tlevel vx( )

v1 v2 v2 v1
v1 v2,( )
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guide its search, whereas heuristics often rely on very problem-specific knowledge and insights to get
good results. The basic operations of a typical genetic algorithm are summarized below [6]:

1. Map the search space of all possible solutions of the problem onto a set of finite strings
(chromosomes) over a finite alphabet.

2. Randomly select the initial population (first generation) of solutions.
3. Compute the fitness (measure of the quality) of each individual in the population.
4. Perform crossover  between pairs of individuals to create new individuals and replace the

randomly-selected individuals with these new individuals.
5. Randomly mutate a small part of the resulting population from last steps.
6. Repeat the optimization process starting at point 3 until the population converges, or until some

other stopping criterion is met.

Due to the continued challenge of time-constrained scheduling problems and the promising per-
formance of GAs on similar problems, scheduling problems have attracted a great deal of attention in
the GA community. However, to our knowledge there are no GA approaches to task graph clustering in
the literature. This paper develops an efficient GA approach to clustering task graphs. More details
about our genetic representation and operator (crossover, mutation, etc.) implementation are discussed
in the following section.

4.  GA Implementation Details

This section briefly describes our proposed clustering methods in three parts: (1) the problem
model (in particular, the underlying assumptions about tasks and processors); (2) solution encoding;
and (3) fitness evaluation.

4.1 System and Task Model

We schedule parallel tasks onto a homogeneous multiprocessor system to minimize the net
execution time, as defined in (1). Following the conventional clustering phase model, we assume an
FCIP architecture as the implementation target. Task execution on each processor is non-preemptive.
Applications are represented by task graphs, as described in Section 3. 

4.2 Solution Encoding
We propose a new framework for applying GAs to scheduling problems. Whereas traditional

solution methods are typically sequence based [4], our solution representation encodes scheduling-
related information as a single subset of graph edges , with no notion of an ordering among the ele-
ments of . This representation can be used with a wide variety of scheduling and clustering problems.

Our representation of clustering exploits the view of a clustering as a subset of edges in the
task graph. Gerasoulis and Yang have suggested this view of clustering in their characterization of cer-
tain clustering algorithms as being edge-zeroing algorithms [5]. One of our contributions in this paper is
to apply this subset-based view of clustering to develop a natural, efficient genetic algorithm formula-
tion. For the purpose of a genetic algorithm, the representation of graph clusterings as subsets of edges
is attractive since subsets have natural and efficient mappings into the framework of genetic algorithms.

Derived from the schema theory (a schema denotes a similarity template that represents a sub-
set of ), canonical GAs (which use binary representations of solution spaces) provide near-opti-
mal sampling strategies [1]. Furthermore, binary encodings in which the semantic interpretations of
different bit positions exhibit high symmetry (e.g., in our case, each bit corresponds to the existence or
absence of an edge within a cluster) allow us to leverage extensive prior research on genetic operators
for symmetric encodings rather than forcing us to develop specialized, less-thoroughly-tested operators
to handle the underlying non symmetric representation. Accordingly, our binary encoding scheme is
favored both by schema theory, and significant prior work on genetic operators. Furthermore, by pro-
viding no constraints on genetic operators, our encoding scheme preserves the natural behavior of GAs. 

Our approach to encoding clustering solutions is based on the following definition.                                                            
Definition 1: Suppose that  is a subset of task graph edges. Then  denotes the clus-

β
β

0 1,{ }n

β fβ E 0 1,{ }→:



5

terization function associated with . This function is defined by:

, (2)

where  is the set of communication edges and  denotes the th edge of task graph.When using a
clusterization function to represent a clustering solution, the edge subset  is taken to be the set of
edges that are contained in clusters. An illustration is shown in Figure 1. Because it is based on using

clusterization functions to represent candidate solutions, we refer to our GA approach as the clusteriza-
tion function algorithm (CFA). 

In the CFA, the initial population is initialized with a random selection of clusterization func-
tions (mappings from  into ). 

4.3 Fitness Evaluation
An outline of our proposed CFA approach is presented in Figure 2. As mentioned in section

3.2, a GA is guided in its search solely by its fitness feedback (lines 6 and 11 of the algorithm). The
implemented search method in our research is based on steady state genetic algorithms [6] and fitness is
calculated from the net execution time  (from (1)), as follows:

, (3)

where  is the running time of the task graph when all tasks run sequentially. Thus, to evaluate the fit-
ness of each individual in the population, we must first derive the unique clustering that is given by the
associated clusterization function, and then schedule the associated clusters. Here, we have applied a
modified version of list scheduling that abandons the restrictions imposed by a global scheduling clock,
as proposed in the DLS algorithm [18]. Since processor assignment has been taken care of in the clus-

β

f ei( )
0 if ei β∈( )

1 otherwise
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Figure 1.  (a) A clustering of a task graph; (b) the corresponding subset  of “zeroed” edges;   (c) the 
corresponding clusterization function .

β
fβ

            

E 0 1,{ }

τN

Fitness τ s τN⁄=

τ s



6

tering phase, the scheduler needs only to order tasks in each cluster and assign start times. The sched-
uler orders tasks based on the precedence constraints and the priority level [17] (the task with the
highest blevel has the highest priority). Additionally, to reduce the processor idle times, a lower priority
task can be scheduled ahead of a higher priority task if it fits within the idle time of the processor and
also satisfies its precedence constraints when moved to this position. 

The net execution time of the associated scheduled graph constitutes the fitness of each indi-
vidual (member of the GA population), and the process of reproduction and evaluation continues as in
Figure 2 while the time constraint is not violated.

5.  Randomized Versions of Deterministic Clustering Algorithms

Two of the well-known clustering algorithms discussed earlier in this paper, DSC and SIA, are
deterministic heuristics, while our GA is a guided random search method where elements in a given set
of solutions are probabilistically combined and modified to improve the fitness of populations. To be
fair in comparison of these algorithms, we have implemented a randomized version of each determinis-
tic algorithm — each such randomized algorithm, like the GA, can exploit increases in additional com-
putational resources (compile time tolerance) to explore larger segments of the solution space.

 Since the major challenge in clustering algorithms is to find the most strategic edges to “zero”
in order to minimize the net execution time of the scheduled task graph, we have incorporated random-
ization into to the edge selection process when deriving randomized versions of DSC (RDSC) and SIA
(RSIA). In the randomized version of each algorithm, we first sort all the edges based on the sorting cri-
teria of the algorithm. The first element of the sorted list — the candidate to be zeroed — then is
selected with probability , where  is a parameter of the randomized algorithm (we call  the ran-
domization parameter); if this element is not chosen, the second element is selected with probability ;
and so on, until some element is chosen, or no element is returned after considering all the elements in
the list. In this last case (no element is chosen), a random number is chosen from a uniform distribution
over  (where  is the set of edges that have not yet been clustered). Further details
on this general approach to incorporating randomization into greedy, priority-based algorithms can be
found in [24], which explores randomization techniques in the context of DSP memory management.

When , clustering is always randomly performed by sampling a uniform distribution
over the current set of edges, and when , the randomized technique reduces to the corresponding
deterministic algorithm. Each randomized algorithm version begins by first applying the underlying
(original) deterministic algorithm, and then repeatedly computing additional solutions with a “degree of
randomness” determined by . The best solution computed within the allotted (pre-specified) compile-
time tolerance (e.g., 10 minutes, 1 hour, etc.) is returned. Through extensive experiments, we have

1 Algorithm CFA
2 Input: A task graph specification of an application, with execution time and inter-

            processor communication estimates.
3 Output: An optimized clustering of the task graph onto multiple processors.
4
5 Generate initial population k using clusterization-function-based encodings
6 Evaluate fitness (clustering + scheduling)
7 Repeat
8  — Select k individuals according to their fitness values (“reproduction”).
9  — Apply the crossover (“2-point crossover”) operation k/2 times to generate k  new

“offspring” individuals (“recombination”) 
10  — Perform the mutation (randomly flip bits in the string with low probability) operat-

tion on selected individuals in the new population.
11 — Evaluate fitness (clustering + scheduling)
12 — Apply an elitist strategy (the top-ranked, fittest individual is never discarded) to

the new population.
13 Until the time-constraint is met

Figure 2. A sketch of the proposed CFA algorithm for task graph clustering.

p p p
p

0 1 … T 1–( ), ,{ , } T

p 0=
p 1=

p
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found the best randomization parameters for RSIA and RDSC to be 0.10 and 0.65, respectively.

6.  Performance Evaluation and Comparison

In this section, we present an experimental comparison of DSC, SIA, RDSC, RSIA and CFA.
We compare these heuristics using the widely used metric of speedup, which is defined by

, (4)

where  is the net execution time of the schedule produced by the given heuristic, and  is the
sequential (single-processor) running time, as defined in section 4.3.

To achieve valid comparisons, we also assume that the execution models, underlying architec-
tures and objective functions for the heuristics are identical (these details were discussed in Section 3).
The allotted running time for each input graph to RDSC or RSIA was determined from the CFA running
time on the same graph for 3000 iterations (generations), which allows comparison under equal
amounts of running time. All experiments were performed on an Intel Pentium III processor with a 1
GHz CPU speed. 

All the heuristics have been tested with two sets of input graphs. The first set consists of 60
application graphs involving numerical computations (Laplace, Gaussian Elimination, etc., where the
number of tasks varies from 10 to 50 tasks), and digital signal processing (DSP). The DSP-related task
graphs include -point Fast Fourier Transforms (FFTs), where  varies between 2 and 128; a collec-
tion of uniform and non-uniform multirate filter banks with varying structures and numbers of channels;
and a compact disc to digital audio tape (cd2dat) sample-rate conversion application. Here, for each
DSP application, we have varied the communication to computation cost ratio (CCR), which is defined
by

. (5)

Specifically, we have varied the CCR between 0.1 to 10 when experimenting with each task graph.
The second set of input graphs consists of 140 random graphs in two sets: the first set (setI)

consist of 6 subsets of graphs with CCRs of 0.1, 0.2, 0.5, 1, 2, 10. Each subset in turn is divided to small
graphs (10 to 50 nodes) and large graphs (50 to 1000 nodes). The second set (setII) contains graphs with
an average of 50 nodes and 100 edges and different CCRs (from 1 to 10). 

To set the CFA algorithm parameters (size of population, number of generations, mutation
probability, and crossover probability), we carried out a large number of experiments by varying these
parameters and comparing the results. Based on the results of these experiments, we set the CFA
genetic algorithm configuration to have a population size of 100, a number of generations equal to
3000, and mutation and crossover probabilities of 0.01 and 0.8, respectively.

 The net execution times of application graphs and random graphs for the deterministic heuris-
tics and CFA are shown in Figures 3 and 4, and the results for similar input graphs for RDSC, RSIA and
CFA are given in Figures 5 and 6. It can be seen from the results that CFA consistently performs signif-
icantly better than the other approaches, and the benefit of the CFA approach increases with increasing
CCR values. Overall, our experimental results show that CFA is preferable for compile time tolerances
that accommodate the underlying GA configuration (less than 1 minute to 10 hours for the task graphs
that we considered in our experiments). Our results are summarized further in the following section,
along with our conclusions.

7.  Summary and Conclusions

This paper has explored multiprocessor clustering techniques to exploit the increased compile
time tolerance of the embedded systems domain, and achieve efficient mapping of applications onto
multiprocessor architectures. We have developed a novel and natural genetic algorithm formulation,
called CFA, for multiprocessor clustering, as well as randomized versions, called RDSC and RSIA, of

Speedup τs τN⁄=

τN τs

N N

CCR
C e( )∑ E⁄
t x( )∑ V⁄

-----------------------------=
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two well-known deterministic algorithms, DSC [23] and SIA [17], respectively. RDSC and RSIA per-
form at least as well as DSC and SIA, but are able to exploit arbitrary increases in compile time toler-
ance due to their incorporation of probabilistic selection. Based on these developments, we have

performed an extensive experimental study that compares the alternative strategies under equal amounts
of running time (compile time tolerance). Our experiments have demonstrated that the CFA algorithm
significantly outperforms RDSC and RSIA, and that the improvement offered by CFA increases with
increasing communication costs in the application relative to the amount of computation. Thus, CFA is
especially useful when managing communication costs is important.

We have also observed that the performance of RDSC and RSIA varies significantly across
various types of task graph structures. For example, RDSC appears to perform relatively poorly on task
graphs that exhibit low parallelism and high interprocessor communication cost, or that contain multi-
ple critical paths. Similarly, RSIA performs relatively poorly in the presence of uniform (homogeneous)
communication costs across the task graph edge set. Presently, we are developing further experiments
to quantify these distinctions. Another useful direction for further work is exploring the integration of
merging algorithms into the CFA framework (e.g., in the fitness evaluation phase).
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